

The role of imaging in defining the mechanism of stent failure

Mauro Echavarría Pinto MD, MSc, PhD

Cardiólogo Intervencionista

Hospital General ISSSTE Querétaro

Facultad de Medicina, Universidad Autónoma de Querétaro

Potential conflicts of interest

Speaker's name: Mauro Echavarría Pinto

☑ I have the following potential conflicts of interest regarding the topics of this presentation:

Speaker at educational events: Philips/Volcano Corporation, Abbot, Boston,

Proctor: Boston, Phillips, Levbeth

Case presentation

- 67 yo male
- Diabetes and hypertension
- Stable angina 4 years ago -previous PCI to LAD with DES: no more details available

- Current clinical presentation
 - Recent onset progressive typical angina CCS II /III
 - Normal ECG
 - Normal troponinx2

Stent failure as cause of new-onset unstable angina

Report of a European Society of Cardiology-European Association of Percutaneous

Cardiovascular Interventions task force on the evaluation of coronary stents in Europe:

executive summary (Meta-analysis of 158 RCT trials)

Stents lose lumen over time

Systematic review results: median, interquartile range and cumulative frequency of in-stent late lumen loss. BMS, bare metal stents; DES, drug-eluting stents.

Byrne et al. European Heart Journal 2015. doi:10.1093/eurheartj/ehv203

Stent lumen loss:

Leads to clinical events in 3% of patients at 1 year

Giustino G, et al. J Am Coll Cardiol. 2022 Jul 26;80(4):348-372.

Coronary stent failure

Coronary stent failure

Angio-guided PCI always looks great (or at least OK) and can hide a bad PCI result

56 yo patient admitted with inferior STEMI, "IVUS-guided" PCI

Angio-guided PCI always looks great (or at least OK) and can hide a bad PCI result

3 months later, readmitted because of Non-STEMI

Coronary stent failure

Coronary stent fracture

- 82 yo male
- MVD treated with CABG 30 years ago
- Now CCS II with normal LV and inferolateral wall ischaemia
- ISR of ostial RCA due to stent fracture
- Patent LIMA
- High bleeding risk

Coronary stent fracture

Classification

"67% of the grade V fracture lesions were associated with adverse pathologic findings at fracture sites "

Coronary stent fracture

Clinical impact

Table 1: The incidence of SF, adverse clinical outcome, and percentage of TLR in patients with SF

Study	Incidence	Adverse clinical outcome	TLR (%)
Lee et al.,[16]	1.9%	60% ISR and 10% ST	70
Lee ^[17]	1.5%	53.3% ISR	53.3
Ino <i>et al.</i> , ^[9]	4.9%	33% ISR	28
Chung ^[30]	0.84%	65% ISR	30
Aoki <i>et al.</i> , ^[24]	3.1%	37.5% ISR	50
Umeda et al., ^[25]	7.7%	15.2% ISR	9
Park <i>et al.</i> , ^[48]	0.89% for SES 0.09% PES	41.7%	33.3
Chakravarty et al.,[39] meta-analysis of eight studies	Mean incidence 4%	38%	17

TLR: Target lesion revascularization; SES: Serolimus-eluting stent; PES: paclitaxel-eluting stents; ISR: Instent restenosis

Stent fracture is associated with a very high rate of adverse clinical outcomes

Failed AWE

Successful RWE

IVUS in stent fracture

Plan: stent overlap over stent fracture

DES 3x36mm

Final result

Coronary Angiogram

OCT

Mechanism of Stent Failure

Coronary Angiogram

IVUS

Mechanism of Stent Failure

Acquisition – Interpretation – Reaction

MLD MAX: morphology

1. Ruptured plaque

2. Mostly lipidic neoatherosclerosis

Acquisition – *Interpretation* – Reaction

Coronary stent failure

DES or DEB for ISR?

DAEDALUS: Pooled individual pt data from all 10 RCT comparing DCB vs DES for the treatment of ISR. N=2,099 lesions

One-Sta	ge Analysis	}								
	DCB	DES			HR [95% CI]	p _W	P _{interaction}	HR _{adj} [95% CI]	p _{Wadj}	P _{interaction}
BMS-ISR	30 / 372	32 / 338	-1		0.83 [0.51-1.37]	0.476	0.033	0.78 [0.46-1.32]	0.355	0.012
DES-ISR	114 / 649	67 / 599		-1-	1.58 [1.16-2.13]	0.003	0.033	1.74 [1.24-2.45]	0.001	
	144 / 1,021	99 / 937								
			0.5	1 2						
			Favors DCB	Favors DES	ì					

1. BMS stent failure: better DCB

2. DES-stent failure: better DES

DCB or DES for ISR?

Network meta-analysis of 29 RCT including 5973 ISR patients

DCB or DES for iSR?

TABLE 4 Factors Favoring the Use of Drug-Coated Balloons vs DES Implantation in ISR

Favors Drug-Coated Balloon

- ISR with less aggressive pattern of ISR (eg, focal) with good lumen expansion after balloon dilatation
- ISR of BMS
- Multilayer ISR
- Patients at high bleeding risk who cannot tolerate DAPT
- Major side branch involved to avoid jailing

Favors Repeated DES

- ISR with more aggressive pattern of ISR (eg, diffuse or occlusive) at high risk of recurrence
- ISR of DES
- Single-layer ISR
- Presence of a stent-related mechanism (eg, stent fracture or stent gap)
- Suboptimal lumen expansion after balloon dilatation

BMS = bare-metal stent; DAPT = dual antiplatelet therapy; DES = drug-eluting stent; ISR = in-stent restenosis.

How to use the drug-eluting balloons: recommendations by the German consensus group

MLD MAX: length and diameter of previous stent, distal

Distal side diameter: 2.5mm Stent length: 16mm

Acquisition – *Interpretation* – Reaction

MLD MAX: length and diameter of previous stent, proximal

Proximal side diameter: 2.65mm 2.75x16mm stent (most likely)

Acquisition – *Interpretation* – Reaction

MLD MAX: distal landing zone

zone:

- Lumen: 2.8mm
- EEL: 3.6mm
- (previous stent:
- 2.75mm)

Coronary artery disease

Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions

Endorsed by the Chinese Society of Cardiology

Lorenz Räber¹, Gary S. Mintz², Konstantinos C. Koskinas¹, Thomas W. Johnson³, Niels R. Holm⁴, Yoshinubo Onuma⁵, Maria D. Radu⁶, Michael Joner^{7,8}, Bo Yu⁹, Haibo Jia⁹, Nicolas Menevau^{10,11}, Jose M. de la Torre Hernandez¹², Javier Escaned¹³, Jonathan Hill¹⁴, Francesco Prati¹⁵, Antonio Colombo¹⁶, Carlo di Mario¹⁷, Evelyn Regar¹⁸, Davide Capodanno¹⁹, William Wijns²⁰, Robert A. Byrne²¹, and Giulio Guagliumi²²*

Coordinating editor: Prof Patrick W. Serruys, MD, PhD, Imperial College, London, UK

Document Reviewers: Fernando Alfonso²³, Ravinay Bhindi²⁴, Ziad Ali²⁵, Rickey Carter²⁶

EAPCI consensus

- Distal lumen
 reference may
 represent a safe and
 straight forward
 approach for stent
 selection
- Up round stent 0-0.25mm
- Landing zones selection is crucial

Angioplasty

Stent predilation with 3.0x10mm NC balloon at 24 atm

OCT of proximal LAD

MLD MAX: proximal lesion assessment

Proximal stenosis/landing zone

1. MLD: 1.92mm

2. MLA: 3.05mm²

Proximal lesion assessment

Palowsky et al. Int J Cardiovasc Imaging (2013) 29:1685–1691

Proximal lesion assessment

PCI with 3.5x38mm DES at 20 atm

Acquisition – *Interpretation* – Reaction

MLD MAX: ok

Acquisition – *Interpretation* – Reaction

Intracoronary imaging is essential to understand and treat stent failure

- I is the preferred technique to study in-stent restenosis and stent thrombosis
- Tailored treatment strategies based on the failure mechanism appear reasonable:
 - Postdilatation plus DCB only in case of malapposition/underexpansioninduced stent failure
 - Stent implantation in presence of neoatherosclerosis or mechanical stent failure

MLD MAX: length and diameter

Good distal landing zone

Distal landing zone:

1. Lumen: 2.8mm

2. EEL: 3.6mm

(stent: 2.5mm)

Distal landing zone

PCI with 3.5 mm balloon

