

DEB in small vessels

Dr Mario Araya

Chile

• Honoraria fees from Terumo, Cordis

RISK OF BINARY ANGIOGRAPHIC RESTENOSIS AFTER PERCUTANEOUS CORONARY INTERVENTION ACCORDING TO REFERENCE VESSEL DIAMETER OF THE TARGET SEGMENT

SMALL MEDIUM LARGE (<2.75 mm) (2.75-3.25 mm) (>3.25 mm)

Balloon-only PTCA	35-55%	25-40%	20-35%
Bare-metal stents	25-50%	15-35%	15-20%
Drug-eluting stents with			
relatively high late loss (eg Endeavor™)	30-35%	20-30%	5-12.5%
medium late loss (eg Taxus™)	20-25%	10-20%	2.5-7.5%
low late loss (eg Cypher™ or Xience™)	10-15%	5-10%	0-5%

Data from Agostoni et al, C-SIRIUS, ENDEAVOR-2, ENDEAVOR-3, MICROSCOPE, SES-SMART, SIRIUS, SIRTAX, SPIRIT-2, SPIRIT-3, TAXUS-5, and TAXUS-6, or estimated from other unpublished sources

Small vessel PCI with DES-1 year outcome

Prospective-SPIRIT SV trial

Fig. 2. Kaplan-Meier curve for the (a) primary endpoint target lesion failure and (b) secondary composite endpoint target vessel failure. All patients included were treated with the XIENCE nano EECSS.

Study name	DCB	Comparator	n	Reference vessel	Follow-up (clinical-angio)	Primary endpoint
PICCOLETO, 2010	DIOR PCB	TAXUS Libertè PES	57	<2.75	6 M angio 9 M clinical	6M DS (ITT)
BELLO, 2012	INPACT FALCON PCB	TAXUS Libertè PES	182	<2.8	6 M angio 12-36 M clinical	6M LLL (ITT)
RESTORE SVD, 2018, 2020	RESTORE PCB	Resolute Integrity ZES	230	2.00-2.75 Length<26	9-12 M angio 12-24 M clinical	9M DS (ITT)
BASKET-SMALL2, 2018,2020	SEQUENT PLEASE PCB	TAXUS PES and XIENCE EES	758	RVD 2.00-3.00	12-36 M clinical	12M MACE (non inferiority)
PICCOLETO II, 2019, 2022	ELUTAX SV/EMPEROR PCB	Xience EES	232	RVD 2.00-2.75 Length≤25	6 M angio 12-36 M clinical	6M LLL (ITT)
DISSOLVE, 2024	Dissolve PCB	Resolute DES	247	RVD 2-2.75	9M angio 12 M clinical	9M DS (ITT)

Drug-coated balloon vs. drug eluting stent for small coronary vessel disease: 6-mo. primary outcome of the PICCOLETO II randomized clinical trial.

A study from the Italian Society of Interventional Cardiology GISE. (NCT 03899818)

Bernardo Cortese, MD, FESC

Baseline procedural characteristics

	DES	DCB	p
Number of patients and lesions	114	118	
Predilatation, n (%)	78 (69)	99 (84)	0.007
Postdilatation, n (%)	66 (59.4)	4 (3.3)	0.001
Number of devices used (mean), n	1.12	1.03	0.04
Length of device used (mean), mm (SD)	18.3 (6.9)	21.8 (8.2)	0.04
Mean inflation pressure, atm (SD)	13.7 (2.5)	11.4 (3.3)	0.07
Mean duration of inflation, sec (SD)	21.4 (11.8)	49.2 (14.5)	0.003
Bailout stenting, n (%)	-	8 (6.8)	-
Angiographic success, n (%)	113 (99.1)	116 (98.3)	0.88
Procedural success, n (%)	112 (98.2)	116 (98.3)	0.92

In-lesion LLL (primary study endpoint)

Clinical outcome (12 months)

Drug-Coated Balloons for Small Coronary Artery Disease: BASKET-SMALL 2

Raban V. Jeger, Ahmed Farah, Marc-Alexander Ohlow, Norman Mangner, Sven Möbius-Winkler, Gregor Leibundgut, Daniel Weilenmann, Jochen Wöhrle, Stefan Richter, Matthias Schreiber, Felix Mahfoud, Axel Linke, Frank-Peter Stephan, Christian Mueller, Peter Rickenbacher, Michael Coslovsky, Nicole Gilgen, Stefan Osswald, Christoph Kaiser, and Bruno Scheller, for the BASKET-SMALL 2 Investigators

ESC Congress Munich 2018

BASKET-SMALL 2

Primary Endpoint (Non-Inferiority MACE 12 Months)

Set	Level	Events	Difference	СІ	р
PPS	DES	27 / 359 (7.52%)			
	DCB	28 / 370 (7.57%)	0.0005	[-0.038, 0.039]	0.0217
FAS	DES	28 / 376 (7.45%)			
	DCB	28 / 382 (7.33%)	-0.0012	[-0.040, 0.037]	0.0152
		-0.06 -0.04 -0.02 0 0.02 0.04 0.00 Favors DCB DCB (%) - DES (%)	6		

ESC Congress Munich 2018

PPS, per protocol set; FAS, full analysis set.

0-20 ¬ -+- DES -- DCB 0.15-Cumulative MACE event rate 0.10 -0.05 Follow-up (days) Number at risk DES 376 284 DCB 382 371 368 367 362 351 347 346 343 326 295

Figure 3: Cumulative incidence rates for MACE
Full analysis population. MACE=major adverse cardiac events. DCB=drug-coated balloons. DES=drug-eluting

Findings: In **small** native coronary artery disease, **DCB was non-inferior to DES** regarding MACE up to 12 months, with similar event rates for both treatment groups.

BASKET-SMALL 2

stents.

BASKET-SMALL 2 at 3 years

Figure 2: Kaplan-Meier estimates of the cumulative probabilities of major adverse cardiac events in the two study groups during 3 years for the full analysis set

DCB=drug-coated balloons. DES=drug-eluting stents. HR=hazard ratio.

Angiographic Outcome at Follow-up

	DES (n = 66)	DCB (n = 51)	Estimate (95%CI)	p-Value
Time until follow-up, days	175 (77-224)	170 (82-229)		0.70
Minimal diameter, mm				
In-segment	1.49 (1.26-1.76)	1.27 (1.12-1.52)	-0.19 (-0.38-0.00)	0.048
In-stent/in-balloon	1.76 (1.47-2.02)	1.35 (1.13-1.70)	-0.35 (-0.540.17)	<0.001
Diameter stenosis, %				
In-segment	29.0 (20.3-45.5)	35.8 (24.8-44.9)	7.18 (0.08-14.28)	0.047
In-stent/in-balloon	18.8 (9.6-35.8)	34.5 (19.1-42.8)	14.7 (7.7-21.6)	<0.001
Late lumen loss, mm				
In-segment	0.06 (-0.15-0.40)	0.10 (-0.14-0.26)	0.09 (-0.05-0.23)	0.20
In-stent/in-balloon	0.13 (-0.14-0.57)	0.10 (-0.16-0.34)	0.03 (-0.13-0.19)	0.72
Net gain, mm				
In-segment	1.40 (0.75-1.89)	1.18 (0.89-1.59)	-0.29 (-0.560.01)	0.045
In-stent/in-balloon	1.46 (0.93-2.08)	1.24 (0.84-1.86)	-0.39 (-0.700.09)	0.011
Binary restenosis, %			OR	
In-segment	21.5 (14)	20.4 (10)	0.91 (0.35-2.25)	0.83
In-stent/in-balloon	18.5 (12)	16.3 (8)	1.01 (1.00-1-03)	0.66

Difference between post-procedure and follow-up angiography

Diameter stenosis (In-stent/In-balloon)

DES +10.0% DCB +6.8%

Angio subgroup

In-segment Late Lumen Loss Distribution In-

In-segment Late Lumen Loss by Time

Angio subgroup

Complete thrombotic vessel occlusion in 8 patients with DES (Xience n=5, Taxus n=3) vs. none with DCB (p = 0.009)

Clinical presentation:

- 3 STEMI
- 1 NSTEMI
- 3 unstable angina
- 1 heart failure

All but one on DAPT

SOLACI SOCIME'25

DCB vs DES in small vessels. Andromeda Metanalisis

Comprehensive, investigator-initiated, collaborative, **individual patient** data meta-analysis (CRD42023479035) N= 1154 patients (582 DCB; 572 DES)

Drug-coated balloons versus drug-eluting stents for small non-complex de novo coronary artery lesions: A segment-level propensity score matched analysis from SCAAR

Presenter: Sacharias von Koch

2025

Study period: 1/Jan/2016 – 16/May/2024

 Study population: All patients undergoing PCI in non-complex small small vessels. All complex procedures were excluded

 Statistics: PS-matching was used to address confounding. Kaplan-Meier estimates and Cox regression was used to assess outcome through 5 years

 Overall similar baseline characteristics after PSmatching

 Large proportion of acute coronary syndrome

Patient-characteristics		DCB	DES
Mean (SD) or %		N=1,439	N=1,439
Age		68.9 (11.2)	68.7 (10.8)
Female		27.4	26.6
Active smoker		12.0	13.8
Diabetes mellitus		25.3	24.8
Hypertension		70.1	70.5
Previous MI		26.8	26.1
Previous PCI		32.2	30.9
ACS		66.0	64.2
3 vessel disease		13.8	15.1
Use of IVUS/OCT		4.1	4.0
DCB/DES diameter	<2.5 mm	51.3	50.9
	2.5-<3.0mm	48.7	49.1

p-value: 0.016

	Number of segments (%)	Hazard-ratio (95% confidence interval), p-value	P-value of interaction
All segments	2878 (100.0%)	HR, 0.76; 95%CI, 0.61-0.95; P = 0.016	
Sex			0.429
Female	777 (27.0%)	HR, 0.88; 95%CI, 0.58-1.33; P = 0.54	
Male	2101 (73.0%)	HR, 0.72; 95%CI, 0.56-0.94; P = 0.015	
Age		ì	0.758
Age < 75 years	1892 (65.7%)	HR, 0.80; 95%CI, 0.59-1.09; P = 0.16	
Age≥75 years	986 (34.3%)	HR, 0.75; 95%CI, 0.54-1.02; P = 0.07	
Diabetes mellitus		i	0.537
No diabetes mellitus	2157 (74.9%)	HR, 0.80; 95%CI, 0.61-1.06; P = 0.12	
Diabetes mellitus	721 (25.1%)	HR, 0.70; 95%CI, 0.48-1.01; P = 0.05	
Indication		i i	0.593
CCS or other indication	n 1006 (35.0%)	HR, 0.70; 95%CI, 0.47-1.05; P = 0.08	
ACS	1872 (65.0%)	HR, 0.80; 95%CI, 0.61-1.04; P = 0.09	
DCB/DES size			0.101
≥2.5 mm	1407 (48.9%)	HR, 0.64; 95%CI, 0.47-0.87; P = 0.005	
≤2.25 mm	1471 (51.1%)	HR, 0.93; 95%CI, 0.68-1.27; P = 0.65	
Occlusion		i	0.666
No acute occlusion	2599 (90.3%)	HR, 0.75; 95%CI, 0.59-0.95; P = 0.016	
Acute occlusion	279 (9.7%)	HR, 0.88; 95%CI, 0.47-1.64; P = 0.69	
		5 1 2	
		.5 1 2 ← Favours DES Favours DCB →	

- RCT based Evidence show that is safe to treat small vessels with DCB
- However some real world registries show DES superiority.
- I believe the problem is the technique

Drug-Coated Balloons for Coronary Artery Disease

Third Report of the International DCB Consensus Group

Raban V. Jeger, MD, ^a Simon Eccleshall, MD, ^b Wan Azman Wan Ahmad, MD, ^c Junbo Ge, MD, ^d Tudor C. Poerner, MD, ^e Eun-Seok Shin, MD, ^f Fernando Alfonso, MD, ^a Azeem Latib, MD, ^h Paul J. Ong, MD, ⁱ Tuomas T. Rissanen, MD, ^j Jorge Saucedo, MD, ^k Bruno Scheller, MD, ^j Franz X. Kleber, MD, ^m for the International DCB Consensus Group

CENTRAL ILLUSTRATION DCB-Only Strategy for PCI in Coronary Artery Disease

Provisional drug-coated balloon treatment guided by physiology on de novo coronary lesion

Eun-Seok Shin¹, Liew Houng Bang², Eun Jung Jun¹, Ae-Young Her³, Ju-Hyun Chung¹, Scot Garg⁴, Joo Myung Lee⁵, Joon-Hyung Doh⁶, Chang-Wook Nam⁷, Bon-Kwon Koo⁸, Qiang Tang⁹

Figure 3. Provisional drug-coated balloon (DCB) strategy guided by fractional flow reserve (FFR). The acceptable angiographic and functional criteria after balloon

- 75 yo male
- Previous inferior AMI
- Chronic stable angina FC 2
- Prostate cancer (need for surgery ASAP)
- SPECT: anterior and apical ischemia 15%

RFR 0,79 Significant jump in mid LAD pullback

Careful and progressive predilatation (SC balloons 2-2,5-2,75) and wait 10 minutes

ODINAMIA

Selution DEB 2,75 mm x 30 mm 1 min

SUBERCASEAUX PRIETO, PEDRO 427327 * 24-06-1956 M	H	Flombre Institución I MArio, Araya AXIONI-Artio VD116 230318
ESTUDIO HEMODINAMIA 07-02-2024 14 32:47 23 - 1/91		14.11) 14.11)
0.00 sec		MR72223
		600000000000000000000000000000000000000
		BEAUTY OF THE PARTY OF THE PART
R		1000000
Coro		512 x 512 RB 52% BDO 70%
om 22 A KV 99 mA 308		
D 168 RAO 28° / CRAN 30"		CV 118 AV 114

- Male 65. Previous NSTEMI
- Chest pain and treadmill test with ST abn
- Need for gallbladder surgery

- Predilatation 1:1. LAD and Dg
- Class C dissection in mid LAD
- So we continue with provisional stenting and blend treatment with DEB to SB

Orsiro stent 3 x 35 mm

POT NC 3,75 and wire exchange

kiss 3,0 and 2,5 NC balloons

Selution 2,5 x 30 mm

• 4 months FU of blend tx

A Prospective, Multicenter, Randomized Trial Comparing Sirolimus-Coated Balloon with Paclitaxel-Coated Balloon in De-novo Small Vessels

TRANSFORM I Trial Patrick Serruys, MD, PhD

Kai Ninomiya, Antonio Colombo, Bernhard Reimers, Sandeep Basavarajaiah, Faisal Sharif, Luca Testa, Carlo Di Mario, Roberto Nerla, Jouke Dijkstra, Bernardo Cortese, Yoshinobu Onuma

The transform one trial is:

Design: Prospective, randomized, multicentre, open-label *non-inferiority trial*

Primary Endpoint:

Angiographic net gain in a per protocol analysis (exclusion of bail-out stenting)

Sample Size Calculation

- A one-sided significance level (alpha) of 5%
- 88% Power to show non-inferiority of Magic Touch to SeQuent Please Neo
- A non-inferiority margin of 0.3 mm
- SeQuent Net Gain 0.87 ± 0.51mm at 6 months (PEDCAD study)
- Maximum attrition rate of 17%
- Sample size 114 patients

121 patients randomized 129 lesions reference diam< 2.75 mm by QCA

Pre DCB OCT assessment

61 patients assigned to Magic Touch arm (66 lesions)

2 lesions: Bail-out stenting
2 lesions: QCA at baseline was
not analyzable
1 patient: withdrawal of consent

56 patients (61 lesions) completed 6month angiography (92.4%) 60 patients assigned to SeQuent Please
Neo arm (63 lesions)

2 lesions: Bail-out stenting
1 lesions: QCA at baseline was not
analyzable
2 patients: withdrawal of consent
2 patients: refusal of follow-up
angiography (1: underwent CCTA)

53 patients (56 lesions) completed 6month angiography (88.9%)

The Rationale for the Pre DCB OCT Assessment is to obtain OCT-derived lumen measurement for DCB balloon-sizing

- 1. To "calibrate" the Drug Coating balloon
- 2. To optimize wall apposition and drug transfer to the vessel wall.
- 3. To elucidate the impact of the dissection volume on angiographic late loss, assessed by quantitative OCT (QCU-CMS).

DCB size / reference lumen diameter Ratio by OCT was 1.03

Cumulative frequency distribution of minimal lumen diameter (MLD)

Cumulative frequency distribution of percent diameter stenosis (%DS)

Cumulative frequency distribution of Late Loss and Net Gain

Relationship between dissection volume on OCT and angiographic late loss

Quantitative Analysis of Dissection

Summary of the results

Late Loss: 0.32mm
Late Lumen Enlargement: 30.0%

Dissection: Unfavorable

Late Loss 0.00mm
Late Lumen Enlargement 53.7%

Dissection: or Irrelevant or Favorable

Primary Endpoint: 6-month Angiographic Net Lumen Gain SCB vs PCB: 0.25 vs 0.48mm

Favors PCB

Favors SCB

Absolute difference in net gain : -0.23mm (95% CI: -0.37 to -0.09)

Lower margin of the one-sided 95% CI: -0.37mm ,P for non-inferiority = 0.173

SOCIME'25 TAKE HOME MESSAGES

- Treatment of small vessels (< 3 .0 mm) with DCB is safe and effective, considering technical factors
- So i start the treatment of this vessels in the DCB strategy
- Nowadays data suggest better results with paclitaxel DCBs

Putting a stent also is a Good option if you do it properly

Clinical Outcomes

	Overall	SCB	PCB	Odds ratio (95%CI)
Number of patient	121	61	60	
Discharge				
Periprocedural MI*	5 (4.1%)	4 (6.6%)	1 (1.7%)	4.08 (0.44, 37.7)
Acute closure/thrombosis	0	0	0	NA
6 months				
DoCE **	11 (9.1%)	7 (11.5%)	4 (6.7%)	1.81 (0.50, 6.54)
Death	0 (0.0%)	0 (0.0%)	0 (0.0%)	NA
MI	5 (4.1%)	4 (6.6%)	1 (1.7%)	4.08 (0.44, 37.7)
TV-MI	0 (0.0%)	0 (0.0%)	0 (0.0%)	NA
TLR **	11 (9.1%)	7 (11.5%)	4 (6.7%)	1.81 (0.50, 6.54)
Clinically or physiologically indicated TLR**	8 (6.6%)	6 (9.8%)	2 (3.3%)	3.16 (0.61, 16.3)
TVR (including TLR)	15 (12.4%)	9 (14.8%)	6 (10.0%)	1.56 (0.52, 4.69)
non-TVR	14 (11.6%)	7 (11.5%)	7 (11.7%)	0.98 (0.32, 2.99)
Late closure/thrombosis	1 (0.8%)	1 (1.6%)	0 (0.0%)	NA

Comparing a strategy of sirolimus-eluting balloon treatment to drug-eluting stent implantation in de novo coronary lesions in all-comers: Design and rationale of the SELUTION DeNovo Trial

Christian Spaulding, MD, PhD^{a,e}, Florian Krackhardt, MD^{b,e}, Kris Bogaerts, PhD^{c,d}, Philip Urban, MD^c, Susanne Meis, BA^f, Marie-Claude Morice, MD^g, and Simon Eccleshall, MD^h Paris, France; Berlin, Germany

Balloon Size correlated to Lesion Length & Vessel Size

61.6 % of SELUTION SLR DEB used ≥ 3.0 mm

