Transcatheter Intervention for Heart Failure Reduced Ejection Fraction: Current and Future Trends

Juan F. Granada, MD

Cardiovascular Research Foundation Columbia University Medical Center, New York

Disclosure Statement of Financial Interest

I am a full-time employee of the Cardiovascular Research Foundation, which organizes and operates Transcatheter Cardiovascular Therapeutics (TCT), which receives educational and research grants from several interventional heart failure companies.

Heart Failure is the EPICENTER of Interventional Cardiovascular Therapies

- HF is the 'final common pathway' of ALL CV diseases
 - Prevalence: ~ 4.3% of US population >65 years of age
 - ~70% of CCU admissions and ~50% mortality at 5 years
 - Most costly condition in CV medicine (pharma expenses ~\$30 billion/year)
- HF hemodynamics well suited for analytic differential diagnosis and evidence-based therapy guidance (including Al-based)
- Primary causes easily targeted by catheter-based therapies!

Heart Failure and the Percutaneous Treatment of Valvular Heart Disease

Natural History of Severe MR in the Real World 1,095 Pts* With 3+/4+ MR and HF (2000 to 2008)

- 74% FMR vs.21% DMR
- DMR Pts (N=226):
 - 84% SURGERY vs. 16% Med Rx
- FMR Pts (N=814):
 - 36% SURGERY vs. 64% Med Rx
- Un-Operated Med Rx Patients:
 - Lower LVEF
 Mean 27% Vs. 42%, P<0.0001
 - Higher STS Score Median 5.8 Vs. 4.0, P<0.001

Prognosis of Unoperated Patients

* Excluded MVA ≤2 cm², AR ≥2+, aortic peak velocity ≥2.5 m/s, HCM, endocarditis, concomitant AV, Ao or pericardial surgeries, LVAD or OHT.

MR Patients Considered for TMVR Display Complex Mitral Valve Features

Special Device Design Considerations Are Needed!

Early Cephea[™] Gen 3 Clinical Experience South America Feasibility Study

Age	80		
Gender	F		
MV Disease	4+ SMR		
LVEF	32%		
LVEDD	5.7 cm		
MVA	2.5 cm ²		
NYHA	Ш		
STS-PROM	3.3		

Cephea™ Gen 3: Second Position

Cephea™ Gen 3: Valve Deployment

Cephea™ Gen 3: Final Result

Next Generation TMVR Systems

SINGLE STEP (ANNULAR)

SINGLE STEP (SUB-ANNULAR)

MULTIPLE STEP (SUB-ANNULAR)

INTREPID

CEPHEA

EVOQUE

REVALVE

HIGHLIFE SAPIEN M3

INNOVALVE

INNOVHEART

Transcatheter Tricuspid Valve Technologies

Annuloplasty

Coaptation Enhancement

Orthotopic Replacement

Heterotopic Replacement

Spacers

Reshaping the Left Ventricle: Catheter-Based Ventricular Remodeling

Transcatheter Direct Sub-Annular Annuloplasty System for **FMR** (AccuCinch)

APPROACH:

Transcatheter device to treat the dilated left ventricle (LV)

MECHANISM:

LV size reduction → LV wall stress reduction → Initiation of biological reverse remodeling

GOAL:

Improve quality of life,
- functional capacity, HF
hospitalization rate, and
life expectancy

Retrograde Access to Mitral Valve

Sub-Annular Catheter Delivery

Anchor Delivery Along LV Wall

Removing the Trac Cath Anchor/Spacer **Delivery Trac Catheter** Removal

Adjusting Cinching and Locking

Accucinch Clinical Experience: Acute Procedural Results (n=51)

TTE Measurements	
LVEF, %	29.8 ± 5.1 [20.7 – 39.4]
LVESD, cm	5.6 ± 0.7
	[3.7 - 7.1]
LVEDD, cm	6.6 ± 0.6
	[5.0 - 7.9]

Procedural Results	Median	
Procedure Time (min)	131 min	
Anchors Placed (#)	13 anchors	
LV Reduction (mm)	9.3 mm	

Improvement in LVEDV and LVEF at 2 Years

Improvement in End Diastolic Volume (LVEDV)

-30mL

Improvement in Ejection Fraction (LVEF)

+5.4%

Dynamic Decompression of the LA: Percutaneous Intra-Cardiac Shunts

Percutaneous Inter-Atrial Shunts: Corvia

- Self-expanding nitinol cage
- Double-disc, flush with LA septum
- Single, 8-mm shunt diameter

Proposed mode of action: dynamic decompression of overloaded LA chamber by shunting blood from LA → RA (Qp:Qs 1.2-1.3)

REDUCE LAP-HF II: Study Design

REDUCE LAP-HF II: Primary Endpoint

Time since randomization (months)

Finkelstein-Schoenfeld p-value=0.85 Win ratio: 1.0 (95% 0.8-1.2)

Time since randomization (months)

Edwards APTURE Transcatheter Shunt System

Edwards Stabilizer RA Guidewire Delivery Cat Atrial Shunt Deliver Catheter

ALT-FLOW EFS: Study Flow and Endpoints

Pre-Specified Endpoint Assessments

ITT Population (N=87)

- Safety and Reintervention (30d)
- Performance: Device, Procedure, and Clinical Success
- AT Population (N=79)
- Outcomes Assessment up to 6 months Total Implant population and subgroups
 - Patency
 - Clinical
 - Hemodynamic
 - Functional
 - Quality of Life

ALT-FLOW EFS: Procedural Outcomes Total Enrolled Cohort (N=87)

Procedural Outcomes			
Device Success	89.7% (78/87)		
Procedural Success	88.5% (77/87)		
Clinical Success	88.5% (77/87)		
Procedural Complications			
Device Embolization	1.1% (1/87)		
Pericardial Effusion*	3.4% (3/87)		
Cardiac Surgery	2.3% (2/87)		
Shunt Patency at 6 months	100% (44/44)		
*One patient required cardiac surgery for CS injury, one patient drained percutaneously, one patient observed without sequelae			

ALT-FLOW EFS: NYHA Class and Health Status Improvement at 1 and 6 Months Total Implant Population (AT)

Paired Comparison in Health Status (KCCQ-OSS) Baseline vs. Follow-up (1 and 6 months)

Volume Overload Management: Splanchnic Nerve Denervation

Chronic Decompensated Heart Failure Splanchnic Ablation for Volume Management (SAVM)

New Aproach for Treating HFpEF

- Unilateral ablation of the right greater splanchnic nerve (GSN)
- Designed to interrupt sympathetic nervous activity to the splanchnic bed, reducing congestion
- Transvenous femoral, implant-free procedure
- < 1 hour procedure time (skin-to-skin)</p>
- Patients typically go home the same day

REBALANCE-HF Roll-in Cohort (n=26) Hemodynamics – PCWP

	Baseline	1-Month	1M - BL	p-value*
Resting				
Mean ± SD (N)	18.5 ± 7.13 (26)	17.6 ± 7.17 (23)	-0.9	0.24
Median (Min, Max)	17.0 (4.0, 34.0)	20.0 (5.0, 31.0)	-3	
Legs-Up				
Mean ± SD (N)	$23.6 \pm 6.20 (25)$	21.2 ± 7.37 (24)	-2.4	0.03
Median (Min, Max)	24.0 (11.0, 34.0)	22.5 (3.0, 32.0)	-1.5	
20W				
Mean ± SD (N)	$36.6 \pm 8.02 (24)$	30.8 ± 8.12 (21)	-5.8	0.003
Median (Min, Max)	35.0 (22.0, 50.0)	30.0 (15.0, 47.0)	-5	
Peak				
Mean ± SD (N)	39.2 ± 7.05 (23)	$33.10 \pm 8.40 (21)$	-6.1	0.016
Median (Min, Max)	37.0 (26.0, 50.0)	35.0 (15.0, 47.0)	-2	

^{*}P-value is derived from a mixed effects repeated measures model with an unstructured correlation structure.

REBALANCE-HF Roll-in Cohort (n=26) Functional Status and KCCQ Score

NYHA Functional Class

More patients in NYHA 1&2 class at follow-up visits (*p<0.001)

KCCQ Overall Score

Sustained improvements in KCCQ Overall Summary Score through 6-months (*p<0.05)

Improvement of Renal Perfusion in Cardio-Renal Syndrome

Renal Afterload Reducers (Venous Pressure)

Passive Systems: PTCR (IVC) Doraya (IVC) Nephronyx (IVC)

Active Systems: preCARDIA (SVC)

Acute Decompensated Heart Failure Enhancing Diuresis by Reducing Venous Congestion

Doraya – a temporary partial obstruction of the IVC, below the renal veins. Decreased renal venous pressure resulting in "Pulling" blood from the renal veins outlet

Renal Preload Augmentation (Arterial Pressure)

The Aortix System in Patients with Decompensated Heart Failure and Cardiorenal Syndrome

Placed at T11 T10 to T12, Outlets perirenal Pump Aortix Delivery System **Aortix Control System** Aortix Retrieval System

Early Human Experience: Impact on Renal Function

Conclusions: Interventional Heart Failure

- Heart failure is the largest unmet need in cardiovascular medicine and a natural target for transcatheter innovation.
- New therapies go beyond valves, addressing ventricular remodeling, volume overload, and pressure management.
- Early clinical data are promising, but long-term outcomes and patient selection remain key challenges.
- Interventional heart failure is emerging as a new subspecialty and the next major frontier in structural heart disease

