

Stent Thrombosis and restenosis in DM2 patients

Dr. Alejandro Ricalde MD, FACC Mexico City

Background

 Coronary heart disease is a major cause of morbidity and mortality among patients with diabetes mellitus.

 More likely to have coronary artery disease that is complex, diffuse, and involves multiple vessels.

Background

In-hospital, short-term and long-term adverse clinical outcomes observed in patients with type 2 diabetes mellitus vs non-diabetes mellitus following percutaneous coronary intervention

A meta-analysis including 139,774 patients. Outcomes: (Death, MI, Stroke, MACE, Bleeding & Stent Thrombosis)

Short Term

< 1 year

> 1 year


```
Total (95% CI) 82723 221254 100.0% 1.48 [1.39, 1.57]

Total events 7663 13317

Heterogeneity: Tau² = 0.04; Chi² = 251.47, df = 77 (P < 0.00001); I² = 69%

Test for overall effect: Z = 12.90 (P < 0.00001)

Test for subgroup differences: Chi² = 11.32, df = 6 (P = 0.08), I² = 47.0%
```


Outcomes in DM Vs Non DM post PCI In Hospital

Higher RiskMortality /MACE

Same Risk (MI/ Stroke/ Bleeding/ Stent Thrombosis

Outcomes in DM Vs Non DM post PCI

Short Term

Mortality

Myocardial Infarction

MACE

Higher Risk

Increased Risk of Stent Thrombosis in DM patients

Increased platelet reactivity in diabetes:

- Higher levels of:
 - Thrombin
 - Thromboxane A₂ (TXA₂)
 - Hyperresponsiveness of PAR4 to thrombin and TXA_{2.}
 - Increased plat membrane expression of
 - P-selectin, adhesion molecules and glycoprotein (GP) IIb/IIIa.
- Production of reactive oxygen species (ROS)

Decrease

- Vascular synthesis of nitric oxide (NO)
- Prostaglandin is decreased.

Outcomes in DM Vs Non DM post PCI

LONG TERM (> 1YR)

Mortality

Myocardial Infarction

MACE

Higher Risk

In-Stent Restenosis in DM

- In-stent restenosis (ISR) complicates 1-2% of drug eluting stents / year
- Diabetes mellitus (DM) = known risk factor for major adverse cardiac events and ISR after de novo vessel PCI

In-Stent Restenosis in DM

Inflammation	Increased activity of C-reactive protein (CRP) and proinflammatory cytokines Hyperglycaemia, insulin resistance, and free fatty acid production decrease nitric oxide (NO) bioavailability [36,37]. Hyperglycaemia worsens endothelial nitric oxide synthase (eNOS) function [36,37].			
Endothelial dysfunction				
Platelets' dysfunction	Upregulation of P-selectin, GP Ib receptor and GP IIb/IIIa receptor [12,38] Activation of protein kinase C (PKC) and decrease in NO production [12] Enhanced platelet adhesion and aggregation [12]			
Coagulation	Upregulation of VIIa factor and tissue factor, downregulation of antithrombin III, protein S, and protein C [39–41] Hypercoagulability—according to the mechanisms elucidated above			
Rheology	Elevated blood viscosity [12] Elevated fibrinogen production [12]			
VSCMs	Promotion of the atherogenic phenotype of VSMCs through the increased production of reactive oxygen species, upregulation PKC, advanced glycation end product receptors and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [1 Impaired synthesis of collagen (plaque instability) [12] Increased activity of MMPs [42] Increased activity of angiotensin II and endothelin-1 (vasoconstriction) [12,43]			

The association between DM and ISR is extensively documented, due to various mechanisms leading to endothelial dysfunction, subsequent neointimal hyperplasia, and late neoatherosclerosis

International Journal of Cardiology, Volume 404, 131922

Impact of diabetes mellitus on clinical outcomes after first episode in-stent restenosis PCI: Results from a large registry

Mount Sinai database 2015-2021

Inclusion:

- PCI for first episode ISR
- Single layer of stent

The primary endpoint of the study was a composite of major adverse events (MACE); all-cause death, spontaneous myocardial infarction, and target lesion revascularisation at 1-year follow up after PCI.

	Overall n = 3,156	Diabetes n = 1,791	No diabetes n=1,362	p-value
Age (years)	67.1±10.7	66.4±10.1	68.0±11.3	<.001
Female	28.9±5.6	29.3±5.9	28.4±5.3	<.001
Presentation - Stable angina - Unstable angina - STEMI	1718 (54.5%) 828 (26.3%) 24 (0.8%)	971 (54.2%) 456 (25.5%) 12 (0.7%)	747 (54.8%) 372 (27.3%) 12 (0.9%)	0.725 0.242 0.499
Anemia	1363 (45.2%)	937 (54.3%)	426 (32.9%)	<.001
PAD	420 (13.3%)	284 (15.9%)	136 (10.0%)	<.001
CKD	953 (30.2%)	629 (35.1%)	324 (23.8%)	<.001
Atrial fibrillation	295 (9.4%)	151 (8.4%)	4 (10.6%)	0.041
Insulin dependent	772 (43.1%)	772 (43.1%)	-	-
Prior CABG	713 (22.6%)	460 (25.7%)	253 (18.6%)	<.001

Results – MACE at 1 year

MACE 349 (22.4%) vs. 219 (18.7%).

HR 1.22 95% CI (1.03 - 1.45), p= 0.020

AHR 1.07 (0.90 - 1.29). p=0.444

Results – TVR, All-cause death and MI at 1-year

- Patients with DM experienced a higher rate of MACE, MI and all-cause death compared to nondiabetics.
- DM does not appear to be an independent predictor of TVR after ISR-PCI

Tips to Reduce Adverse Outcomes in DM patients

Optimal Glycemic Control

- Maintain blood glucose levels within target range to reduce endothelial dysfunction and inflammation.
- Use antidiabetic medications that have cardiovascular benefits (e.g., SGLT2 inhibitors, GLP-1 receptor agonists).

Adequate Dual Antiplatelet Therapy (DAPT)

- Ensure adherence to prescribed DAPT (aspirin + P2Y12 inhibitor) for an appropriate duration based on stent type and patient risk profile.
- Consider longer DAPT in high-risk patients, such as those with diabetes.

Choice of Stent

- Prefer drug-eluting stents (DES) over bare-metal stents (BMS) due to lower restenosis rates.
- Use newer-generation DES with biocompatible or biodegradable polymers for better vascular healing.

Optimal Stent Deployment

- Ensure proper stent sizing and high-pressure deployment to minimize malapposition.
- Use intravascular imaging (IVUS or OCT) to optimize stent expansion and apposition.

Address Concomitant Risk Factors

- Manage hypertension, hyperlipidemia, and smoking cessation vigorously.
- Use statins for lipid control and plaque stabilization.

Tips to Reduce Adverse Outcomes in DM patients

• Anti-inflammatory Strategies

• Consider medications or interventions that reduce vascular inflammation, which contributes to restenosis.

Regular Follow-Up and Monitoring

Schedule early and regular follow-up to detect restenosis or thrombosis signs. Use non-invasive imaging or stress testing when appropriate.

Lifestyle Modifications

Promote healthy diet, physical activity, weight management, and smoking cessation.

Use of Newer Antiplatelet Agents

In some cases, use potent antiplatelet agents such as ticagrelor or prasugrel, especially in high-risk diabetic patients.

Interventional Strategies

- Consider drug-coated balloons for certain cases of restenosis.
- Use rotational atherectomy or other adjunctive therapies for heavily calcified lesions..

THANK YOU

932557154

